
The History & Design
of LuaCocoa

Eric Wing
@ewingfighter

http://playcontrol.net/opensource/LuaCocoa

Background: Lots of different
hats to wear

• Worked on Globalstar (orbital satellite global communication system)

• Cross-platform: Linux, Mac, Windows, iOS, Android, FreeBSD, Solaris, IRIX

• Scientific Visualization (OpenGL)

• Native Cocoa Application development (Mac, iOS)

• Video Game Engines

• Open Source: SDL, OpenSceneGraph, CMake, OpenAL

• C, C++, Obj-C, Lua, Perl, Java, JavaScript, Swift

• Book author (Beginning iPhone Games Development)

• Startup cofounder

Objective-C
• Small, pure superset of C to add OO features to C

• (funny syntax was deliberately picked to not
conflict with C, C++ so they can be intermixed)

• Created in the 80’s, around the same time as C++,
but SmallTalk influences

• Closest thing to SmallTalk you can get with C

• Messaging another core concept of Obj-C

Objective-C

• Likes late-binding and dynamic dispatch

• Pretty small runtime

• Pretty efficient introspection & reflection

• Not usually a concern unlike in Java, C#

Objective-C

• Unusual blend of statically compiled C typed
language + dynamic features found in scripting
languages

• Runtime C functions
#import <objc/objc.h>
#import <objc/runtime.h>
id objc_msgSend(id self, SEL op, …);

Cocoa
• Huge standard library for Obj-C

• Foundation for non-GUI

• AppKit for GUI on Mac

• UIKit for iOS

• Originally from NeXTStep

• Foundation + AppKit named Cocoa as pun of Java by Apple

• Lots of other frameworks in addition to Cocoa

• Some C, some Obj-C

• CoreData, CoreGraphics, AudioUnits, OpenGL, etc

Cocoa designed for GUI development

• Exploits a lot of crazy dynamic runtime features of Obj-C under the
hood

• Responder Chain

• Key Value Coding

• Key Value Observing

• isa-swizzling (aka method swizzling)

• Cocoa Bindings

• Core Data

• NSUndoManager

• Interface Builder

LuaObjCBridge
(Tom McClean, ~2005)

• Automatically binds classes & methods at runtime
(no compile time glue code)

• Simple: Originally 1000-1500 lines including
#ifdefs for GNUStep/Apple

• Used the only Obj-C 1.0 runtime

• No additional things like libffi

• Used Lua 5.0

LuaObjCBridge limitations
• No subclassing in Lua

• Couldn’t handle non-object types

• C structs, functions, enums

• No automatic memory management

• (had to call retain/release/autorelease in Lua code)

• No metamethods

• (accidental design mistake used lightuserdata)

LuaObjCBridge method
calls

• In Obj-C

• [my_obj doSomethingWithObj1:obj1 andObj2:obj2];

• In LuaObjCBridge

• my_obj:doSomethingWithObj1_andObj2_(obj1, obj2)

• Colons are replaced with underscores

• Trailing underscore is optional in LuaObjCBridge and RubyCocoa

• PyObjC makes an impassioned argument that this is bad
(ambiguous case, etc) which I eventually was convinced of

• Trivia: Obj-C doesn’t have “true” named parameters. Order matters
and is part of the method name.

LuaCore
(Gus Mueller ~2006)

• Cocoa uses a lot of struct types (NSRect, NSPoint, NSSize) in
graphics APIs

• LuaCore introduces manual bindings for common types and C
APIs in CoreGraphics

• Could be used in conjunction with LuaObjCBridge

• I took both and started enhancing them

• Lots of experimentation with structs in particular

• Became kind of a proving ground precursor to LuaCocoa

• Also eventually ended up being maintainer for these projects

Apple WWDC 2006
(Everything changes)

• Objective-C 2.0

• BridgeSupport: fill the holes for language bridges

• Scripting Bridge

• PyObjC & RubyCocoa officially supported by Apple

• Ships on the system

• Xcode & Interface Builder integration

Objective-C 2.0
• Breaking changes to Obj-C

• Introduces 64-bit Obj-C support

• Need to support PowerPC, Intel, 32-bit, 64-bit moving forward

• Apple has been transitioning to first Intel, and then 64-bit

• Opportunity to create a new ABI, so best time to make breaking
language changes

• Runtime functions LuaObjCBridge depended on were deprecated/unavailable

• LuaObjCBridge needed a complete rewrite

• Obj-C 2.0 also introduces optional Garbage Collection

BridgeSupport:
Make full binding at runtime possible

(No static bindings needed)
• XML metadata for things which introspection cannot discover

• C structs, C functions, enums, #defines, global variable names

• Intent of an API

• BOOL is signed char, but really means boolean

• in and out parameters

• (LuaCocoa will use multiple return values for out parameters)

• Also provides .dylib with missing symbols for inline functions

• Open source command line tool ‘gen_bridge_metadata’ can be run on 3rd-
party headers

BridgeSupport
• Apple used to ship both “fullbridgesupport” and (non-full)

“bridgesupport” files

• Apple later removed “full”

• LuaCocoa originally used “full” so some migration pains

• Probably better though because RAM and parse times went way
down

• Non-full tool sometimes misses some needed APIs

• Cobbled together some APIs to allow suppling additional
metadata to fill holes

Scripting Bridge
(not to be confused with BridgeSupport)

• Allows programs to communicate with others through AppleScript dictionary in other languages

• Nobody knows how to write AppleScript (read-only language)

• Objective-C API which LuaCocoa can go through

• Examples

• iTunes (play a song, get info)

 LuaCocoa.import("ScriptingBridge")
 local itunes_application =
SBApplication:applicationWithBundleIdentifier_("com.apple.iTunes")
 itunes_application:pause()
 itunes_application:playpause()
 local itunes_track = itunes_application:currentTrack()
 NSLog("Currently playing: Name:%@, Artist:%@, Year:%d",
itunes_track:name(), itunes_track:artist() ,itunes_track:year())

• Xcode (test automation)

• http://playcontrol.net/ewing/jibberjabber/automated-mobile-test-part2.html

• LuaCocoa also comes with a command line tool: ‘luacocoa’ (slight modification of ‘lua’) to also
allow command line scripting

LuaCocoa philosophy
• Like Lua: “Mechanisms, not policy”

• Use as a library (not a framework)

• Use as you see fit, as little or as much as you want

• Support BOTH sides of the bridge

• Other bridges: “Write everything in the language”

• LuaCocoa: “You could write everything, but may miss the point”

• Xcode, Interface Builder, clang, llvm, lldb are powerful tools

• Also means optional Obj-C GC must be supported

Consequences of
philosophy

• Like most bridges, need to support all the Lua/
scripting side stuff as expected

• Unlike other bridges, also need good C/Obj-C
support to make interacting from the C/Obj-C side
easier

• Obj-C optional Garbage Collection must be
supported

• You make the call on GC, not me

Additional Research
(Lua side)

• LuaObjectiveC (Steve Dekorte)

• Lua 3.1, ~2001

• Trivia: Gave very first talk at first Lua Workshop on IO Language

• LuaBridge (Richard Kiss)

• Lua 4.0, ~2001

• Adobe Lightroom (Mark Hamburg and his team)

• Lua Workshop 2005

Additional Research
(Obj-C side)

• PyObjC (talk by Bill Bumgarner (Apple Obj-C runtime))

• RubyCocoa (Laurent Sansonetti (Apple), MacRuby,
RubyMotion)

• Sat down with me one afternoon at WWDC to explain
how RubyCocoa was implemented via
BridgeSupport and libffi

• JSCocoa (Patrick Geiller)

• Perl CamelBones: Sherm Pendley (Rest In Peace)

http://chopine.be/

LuaCocoa Examples
• Hybrid live coding (Core Animation)

• LuaBork: Swedish Chef Translator (LPeg)

• Or email address validation

• Android package name validation (Java BNR)

• Lua table <=> NSDictionary <=> Info.plist
serialization

LuaCocoa Begins
(MIT License)

• PowerPC & Intel

• 32-bit & 64-bit

• Traditional (Reference Counting) & Obj-C
Garbage Collection

• Started with Lua 5.0

• Eventually migrated to Lua 5.1

Patches to Lua
• LNUM (Asko Kauppi)

• 64-bit integers cannot be stored in double without loss

• long double didn’t work (and probably bad anyway)

• LNUM tries to preserve integers and floating types behind
the scenes

• Intended for numeric computation, author amused by my
use

• No Lua 5.2 support

• Lua 5.3 supports integers!

Patches to Lua
• Objective-C exception handling (me)

• pcall doesn’t know anything about Obj-C exceptions

• Lua has macro for C++ exceptions, but Obj-C doesn’t perfectly fit

• Useful for all Lua on Mac/iOS environments, not just LuaCocoa

• Correctness / Safety

• Performance: Provides “zero-cost” exceptions

• Bonus: Also handles C++ exceptions

• Wish list: Lua refactors exception handling code to make writing this
easier or incorporates patch directly

• (I already have some new patches for Lua 5.3 for other projects)

libffi
• Foreign Function Interface Library

• Low-level (assembly) implementation to provide
common C interface to call functions

• Using actual libffi directly, not LuaJIT 2.0 or LuaFFI

• LuaCocoa predates these by years

• Mentioned because I’ve gotten confused on the Lua
mailing list about libffi questions where they
presume LuaFFI or LuaJIT

libffi
• LuaObjCBridge just used objc_msgSend family

• LuaObjCBridge didn’t handle C functions

• Obj-C 2.0 removed a bunch of functions that were needed for the bridge

• Lots of corner cases about which objc_msgSend to call

• depends on architecture and size of parameters & return values

• libffi more robust and easier to marshall parameters

• LuaCocoa built around libffi

• Mac ships with public libffi included

• (For those who know of NSInvocation, it is awful.)

libffi

• Generality:

• Lua => C/Obj-C functions/methods/blocks uses
libffi

• C/Obj-C => Lua goes through normal Lua C API

• Other bridges like PyObjC/RubyCocoa don’t have
such a powerful API and may resort to libFFI in
both directions

LuaCocoa.import()
• LuaCocoa.import(“Foundation")

• Loads BridgeSupport data and dlopen framework and extra .dylib

• Kind of like require, and would like to unify

• But used extra parameter to work around some cases

• LuaCocoa.import("CoreGraphics", "/System/Library/Frameworks/
ApplicationServices.framework/Frameworks")

• Results in needing a separate standalone executable “luacocoa” instead of
providing just “lua”

• Though needing an autorelease pool also results in this

• TODO: Revisit and fix

C Functions
• BridgeSupport + libffi + dlopen + dlsym allows us to

automatically bind C functions to Lua at runtime

• Inline functions are solved by loading an extra .dylib
provided by BridgeSupport which provides symbols to
access

• Yes, variadics are supported

• Metadata says whether null terminated or printf token
based. LuaCocoa handles appropriately.

local array = NSArray:arrayWithObjects_(obj1, obj2, nil)

NSLog("array: %@: ", array)

structs

• Now using BridgeSupport

• Can get the proper names of fields

• Also overloaded a bunch convenience features

structs
• Definition in C

typedef struct _NSPoint {
 CGFloat x;
 CGFloat y;
} NSPoint;

typedef struct _NSSize {
 CGFloat width;
 CGFloat height;
} NSSize;

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

• Definition in BridgeSupport
<struct name='NSRect' type='{_NSRect="origin"
{_NSPoint="x"f"y"f}"size"
{_NSSize="width"f"height"f}}' type64='{CGRect="origin"
{CGPoint="x"d"y"d}"size"
{CGSize="width"d"height"d}}'/>

• Tricky:

• In 32-bit ABI, NSRect & CGRect (and friends) are different definitions

• 64-bit ABI, Apple redefined NSRect to be a typedef to CGRect

• Subtle implications for implementation, but don’t have time to cover

structs
• Can represent as tables, nested tables, array access, flat

ordered values, etc.

local ns_rect = NSMakeRect(300, 400, 500, 600)
ns_rect.origin = {1000, 2000}
ns_rect.size.width = 1000
ns_rect({ {1001, 2002}, {3003, 4004}})
ns_rect({ 1011, 2022, 3033, 4044})
ns_rect(1111, 2222, 3333, 4444)
ns_rect({1110, 2220}, {3330, 4440})
ns_rect({x=1010, y=2020}, {width=3030,
height=4040})
ns_rect({x=0010, [2]=0020}, {[1]=0030,
height=0040})
ns_rect({origin = {x=10101, y=20202}, size =
{width=30303, height=40404}})

Objects revisited
• Unlike LuaObjCBridge, now use full user data to use

metamethods

• __tostring, __eq, __gc

• Specialized user data for NSArray, NSMutableArray,
NSDictionary, NSMutableDictionary, NSNumber, NSNull,
NSString, NSBlock

• __len, __index, __newindex, __tonumber, __concat, __call

• __gc is the most important since it is the basis for
automatic memory management

NSArray/NSDictionary
• calling NSArray objectAtIndex: counts from 0: array:objectAtIndex_(0)

• But calling through Lua brackets counts from 1: array[1]

• APIs and auto-coercion for Lua tables and NS

• Must copy/convert when this happens

• When converting to NS, because Lua tables can be either, both data
NS structures get created until one can be discarded

• NS* can only hold objects

• Numbers auto-boxed in NSNumber

• Lua functions can now be boxed in Blocks

• (requires signature)

• Non-object user data gets dropped

Proper Memory Management
• 2 sides of the LuaCocoa bridge: Coding on both sides is supported

• Lua side is expected to be Lua garbage collected

• Obj-C side is either classic reference counting, Obj-C garbage collection, or
ARC

• Thought Exercises:

• We create an object in Obj-C and push it to Lua

• If the object goes away in Obj-C, but still active in Lua, it must stay alive

• What if we push the same Obj-C in Lua twice?

• (Same user data or different user data?)

• We create an object in Lua and push it to Obj-C

• If the object goes away in Lua, but still active in Obj-C, it must stay alive

Obj-C Optional Garbage Collection
(2006-2012)

• GC is now deprecated. However, dealing with it had a big
impact on LuaCocoa’s implementation so it is worth
discussing

• Obj-C GC is runtime activated

• Burden placed on library writers to write code such that
their code would work either way

• LuaCocoa was the first to support dual-mode. Most did not.

• LuaCocoa’s commitment to supporting code on both sides
of the bridge forced extra careful thought and design

Obj-C Optional Garbage Collection
(2006-2012)

• In Obj-C there was kind of a dance to support dual mode

• In GC-mode, retain/release/autorelease become no-ops

• But CFRetain/CFRelease are still meaningful (needed for Apple’s
bridged C-types)

// Creation dance
NSObject* the_object = [[NSObject alloc] init];
CFRetain(the_object); // Always meaningful
[the_object release]; // Only in non-GC

// When finally done:
CFRelease(the_object); // Always meaningful

• Also other complicated edge cases I won’t get into

Memory Management
• We create an object in Obj-C and push it to Lua

• If the object goes away in Obj-C, but still active in Lua,
it must stay alive

• Solution: Every time we create a new userdata to push to
Lua, we call CFRetain(). (Note: Do not use Obj-C retain
which is a no-op in GC)

• When the __gc finalize gets called, we call CFRelease()

Memory Management
• What if we push the same Obj-C object in Lua twice?

• (Same user data or different user data?)

• Solution: We reuse the same user data

• All Obj-C objects will have a 1-to-1 relationship with a Lua user data at a given
time which helps simplify some things

• Keep a map between Obj-C object address and user data in a weak table (in the
Lua Registry)

• Weak table prevents us from accidentally rooting the object and leaking

• If object is already in Lua, we reuse that user data

• If not, we create a new user data

• When the object leaves Lua and gets garbage collected, the user data and
weak table should go away.

• Also helps minimize a performance problem of creating too many temporary
objects that need to be collected

Memory Management
• We create an object in Lua and push it to Obj-C

• If the object goes away in Lua, but still active in Obj-
C, it must stay alive

• Solution: This one mostly works itself out if the object is
pure Obj-C. Obj-C side is expected to use normal Obj-
C memory semantics to keep it alive while in use. If
pushed back into Lua, a new user data will be created.

• If the object is a subclass created in Lua, things get
nastier. Too much detail for this talk.

Memory Management
• Summary:

• I am very grateful for Lua weak tables

• I am very grateful for how simple and straight-forward the
__gc metamethod rules work

• (I haven’t dealt with Lua 5.2 and resurrection. Should I be
worried?)

• The Lua Registry and the stack API of Lua was also really
nice to have here so I could refer to values easily already in
Lua without having even more pointers to deal with and risk
making more mistakes with the Obj-C side of the memory
life-cycles (is it GC or non-GC, etc)

Subclassing in Lua
• Cocoa is an object-oriented framework so some classes require you to

subclass

• However, early on Cocoa realized the pitfalls of subclassing and started
preferring delegation (pattern)

• But to use delegates in Cocoa, you still need to create your own class

• Very grateful Lua is not object-oriented by default

• PyObjC, RubyCocoa have to deal with multiple-inheritance headaches
because of the two OO systems colliding

• Really drove home how well designed Lua is for embedding + co-
existing

• Can embed and embrace this foreign environment without creating
this clash/conflict

• Metamethods allow conformance to OO features as needed

Defining a new Class

• Second parameter can be a Class or string

• SimpleLuaOpenGLView =
LuaCocoa.CreateClass("SimpleLuaOpenGLView
", NSOpenGLView)

• Protocols are listed at the end

• OpenPanelDelegate =
LuaCocoa.CreateClass("OpenPanelDelegate",
NSObject, "NSOpenSavePanelDelegate")

Subclassing in Obj-C
#import <Cocoa/Cocoa.h>
#import <OpenGL/gl.h>

@interface SimpleLuaOpenGLView : NSOpenGLView
{
}
- (void) drawRect:(NSRect)the_rect;
@end

@implementation

- (void) drawRect:(NSRect)the_rect
{

glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 0.85, 0.35);
glBegin(GL_TRIANGLES);

glVertex3f(0.0, 0.6, 0.0);
glVertex3f(-0.2, -0.3, 0.0);
glVertex3f(0.2, -0.3, 0.0);

glEnd();

glFlush();
}

@end

Subclassing in LuaCocoa

LuaCocoa.import("Cocoa")
LuaCocoa.import("OpenGL")

SimpleLuaOpenGLView = LuaCocoa.CreateClass("SimpleLuaOpenGLView", NSOpenGLView)

SimpleLuaOpenGLView["drawRect_"] =
{

“-v@:{CGRect={CGPoint=dd}{CGSize=dd}}",

function (self, the_rect)
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 0.85, 0.35);
glBegin(GL_TRIANGLES);

glVertex3f(0.0, 0.6, 0.0);
glVertex3f(-0.2, -0.3, 0.0);
glVertex3f(0.2, -0.3, 0.0);

glEnd();

glFlush();
end

}

Categories
• Objective-C has the ability to add new methods to

classes you don’t own

• Handy for adding new helper methods without
replacing all instances of a class with a new
subclass

• Also handy for implementing methods that have
dependencies on otherwise unrelated classes

• Can also be abused to override/replace an existing
definition

Categories
NSView["rightMouseDown_"] =
{

"-v@:@",
function(self, the_event)

NSLog("rightMouseDown_ %@", the_event)
end

}

• Reuses same syntax as before

• TODO: Add API for Swizzling

• Not commonly done in Obj-C (requires low-level runtime APIs)

• But would allow for calling the existing implementation before replacing it

• (Subclass overriding without subclassing)

• Swizzling is used in LuaCocoa implementation for some things like

dealloc/finalize

Subclassing Behind the Scenes
• Lots of tricky things

• A new Class (and an instance of it) is compromised of a Obj-C part and a Lua part
(put in environment table)

• Obj-C class registration is global/singleton so the Lua part needs to stick
around

• Because LuaCocoa supports multiple lua_States, the Lua part is kept around
in a global list, with a map between lua_State & implementation

• Assumption is that all scripts that use the class should define the class, and
in exactly the same way.

• But if the lua_State is closed (live-coding?), the global map will fall back
to the next definition in the global list

• This can break down if your implementation uses non-constant
values local only to a particular lua_State

• You must decide on the trade-offs here

Subclassing Behind the Scenes
• Obj-C dealloc & finalize are tricky

• There is extra clean-up LuaCocoa needs to do for every
object

• Can’t just call ‘super’ because there is no LuaCocoa
intermediate object…user directly subclasses real Obj-C
object

• Also, finalize and some classes for dealloc trigger on a
background thread which can be big trouble with Lua

• Solution: Method swizzling is done to invoke the proper
dealloc/finalize

• Also compares the thread the lua_State was created on vs.
the current thread. Attempts to redirect as necessary.

Subclassing Behind the Scenes
• ‘super’ doesn’t work the way you would hope

• [super dealloc];

• Compiler figures out super at compile time. Doesn’t work for runtime bridge.

• class_getSuperclass & objc_msgSendSuper complicated interaction…hard to explain.
Obj-C mailing list for help.

• But trying to subclass a Lua subclass will break (i.e. 2+ levels)

• Either incorrect implementation or infinite recursion

• (Other Lua/Obj-C bridge implementations I looked at never get this right.)

• Solution needed ffi_prep_closure (blocks unfortunately were not powerful enough)

• Also ended up requiring you to explicitly name the super class you want to invoke in
Lua

• This might be omit-able, but just getting this far was a “miracle” so I gave up

• self:super(NSNumberFormatter):decimalSeparator()

Blocks (2008)
(aka closures for C & Obj-C)

• Peter Norvig: Design patterns are sign of a missing
feature / deficiency in a language

• Blocks are the most significant change to Obj-C (IMHO)

• Changes the semantics of how you use the language

• Completely eliminates the need for Cocoa Delegate
Pattern

• New APIs require blocks, so LuaCocoa must support

Blocks Almost perfect, but not quite

• Could have replaced need for ffi_prep_closure and
used blocks instead

• Hard to create on-the-fly with arbitrary signatures

• Actually need ffi_prep_closure to create runtime
blocks

• Not enough runtime information to get everything
needed through introspection

• Hence still need BridgeSupport and libffi

LuaCocoa Blocks
• Lua functions can now be wrapped in Blocks and treated as Obj-C objects across the

bridge

• Creating blocks in Lua require an Obj-C method signature to represent the types of
parameters and return value

• Defining as a parameter to a function can automatically use BridgeSupport to find
signature

• Creating standalone blocks in Lua requires explicit manual signature

• Blocks can be invoked as functions in Lua (__call)

• Blocks need to be memory managed similar to other Obj-C objects. Also need to pay
attention to Lua function life-cycle when wrapping Lua function. Don’t have time to talk
about this.

• Some blocks APIs invoke on background threads

• LuaCocoa attempts to re-route to origin thread

• However, deadlock issues with GCD concurrency options

• Set concurrent options to NO if given the choice

LuaCocoa Obj-C side

• Public API in LuaCocoa.h

• Objective-C LuaCocoa class to get you going:

 LuaCocoa* lua_cocoa = [[LuaCocoa alloc] init];
 struct lua_State* lua_state = [lua_cocoa luaState];
 NSString* the_path = [[NSBundle mainBundle]
pathForResource:@"MyScript" ofType:@"lua"];
 luaL_loadfile(lua_state, [the_path
fileSystemRepresentation]);
 lua_pcall(lua_state, 0, 0, 0);

LuaCocoa Obj-C side

• Also contains a bunch of C APIs reminiscent of
lua.h, but for Obj-C types

void LuaCocoa_PushInstance(struct lua_State* lua_state,
id the_object);
id LuaCocoa_ToInstance(struct lua_State* lua_state, int
stack_index);
bool LuaCocoa_IsInstance(struct lua_State* lua_state,
int stack_index);

LuaCocoa Obj-C side
(Example: Implement a class in Lua)

LuaCocoa.import("Foundation")

MyLuaClass = LuaCocoa.CreateClass("MyLuaClass", NSObject)

MyLuaClass["doSomethingWithaBool_aDouble_anInteger_aString_anId_"] =
{
 function (self, a_bool, a_double, an_integer, a_string, an_id)

 print("in subclass doSomething:", self, a_bool, a_double, an_integer,
a_string, an_id)

 local ret_string = NSString:stringWithUTF8String_(a_string)
 return ret_string

 end,

 "-@@:Bdi*@"

}

LuaCocoa Obj-C side
(Use Lua class from Obj-C)

 Class MyLuaClass = NSClassFromString(@"MyLuaClass");

 id new_instance = [[MyLuaClass alloc] init];

 NSString* ret_string = [new_instance doSomethingWithaBool:true
aDouble:2.0 anInteger:3 aString:"hello world" anId:the_path];

App Sandbox
Mac 10.7 Lion (2011)

• Security => Principle of least privilege

• Required for Mac App Store

• But also available outside (Developer ID / GateKeeper)

• Generally a good idea if you can support it

• Early on, libffi (mprotect?) was triggering console warnings under App
Sandbox

• Suggestion that Apple was going to fix this

• Not sure of status today (is LuaJIT allowed on Mac App Store?)

• libffi fork for iOS has workaround for mprotect if a problem for MAS

• LuaCocoa seems to work under App Sandbox (with caveats)

App Sandbox gotcha:
Duck Typing

• App Sandbox locks down the file system

• NSOpenPanel/NSSavePanel have changed into a contract that infers the user has granted
permission to a file

• But Apple pulled a fast-one and did a new ground up “secure” implementation of the file
panels

• Instead of making programmers write to the new classes, if App Sandbox is active,
Apple secretly returns an instance of these new classes. (Class Clusters)

• These classes are not related to the original classes in the class hierarchy

• Duck Typing is used instead. To Obj-C programmers, you are never the wiser.

• Under “clean” API usage, you would never notice in LuaCocoa either

• But the NS*Panel APIs use Blocks APIs with non-object parameters so Bridge
Support metadata is needed

• But since these APIs are private/secret details, there is no Bridge Support metadata
and since these classes are unrelated to the NS*Panel classes, there is no way to
correlate them.

App Sandbox gotcha:
Duck Typing

• Workaround: Explicitly define the block signature yourself with your own metadata.

function ShowOpenPanel(thewindow)
 local panel = NSOpenPanel:openPanel()
 panel:setCanChooseFiles_(true)
 panel:setAllowedFileTypes_({ "jpg", "bmp", "png" })

 local my_completion_function = function(returncode)
 if returncode == NSFileHandlingPanelOKButton then
 print("User hit OK")
 elseif returncode == NSFileHandlingPanelCancelButton then
 print("User hit cancel")
 else
 print("This code shouldn't be possible")
 end
 end

 local my_completion_block = LuaCocoa.toblock(my_completion_function,
[[<arg> <arg type='i' type64=‘q'/> <retval type=‘v'/> </arg>]])

 panel:beginSheetModalForWindow_completionHandler_(GetMainWindow(),
my_completion_block)
end

• (Could also create your own Bridge Support file.)

• This problem isn’t actually unique to App Sandbox. Other APIs in Cocoa could do something like this.

Porting to iOS?
• Has become feasible

• BridgeSupport not on iOS but could generate metadata ourselves
and ship in bundle

• gen_bridge_metadata still on Mac and open source

• dynamic libraries allowed for inline symbols?

• libffi iOS fork seems to have a workaround for mprotect PROT_EXEC

• JSCocoa for iOS proves this works

• NSXMLDocument still not available

• Had started experiment moving to TBXML

Future ideas
• iOS

• Lua 5.3

• Objective-Lua (David Given)

• Uses LPEG+LEG to create superset of Lua with Obj-C/SmallTalk like syntax

• slua (offshoot of llvm-lua) (Robert G. Jakabosky)

• Use compiler to generate static bindings

• Use Objective-Lua or annotations to help compiler resolve ambiguities

• Kind of like RubyMotion?

• Cross-platform native GUI in Lua, using the following for platform specific backends

• LuaCocoa (Cocoa)

• LuaInterface (C#)

• LuaJava or JNLua or etc (Java)

• DTrace probes to show Lua script-level info instead of C level (see Ruby & Python)

• NSArray/NSDictionary subclass/class cluster implemented to share Lua table data instead of needing to
copy/convert

Apple State of the Union
• iOS App Store (2008)

• No BridgeSupport on iOS. 3rd party dynamic libraries (dlopen) & mprotect PROT_EXEC forbidden.

• Xcode 4 (2011)

• Breaks most of AppleScript dictionary

• Finally revisited in Xcode 8 (2016)

• PyObjC & MacRuby Interface Builder integration broken/removed

• Mac App Store (2011) sandboxing disincentivizes app scripting

• Laurent Sansonetti leaves Apple to create RubyMotion (2011)

• Mac 10.9 (Mavericks 2013) adds official Obj-C API to JavaScriptCore

• Mac 10.10 (Yosemite 2014) officially adds JavaScript scripting support for “Mac Automation”

• JSCocoa made redundant on Mac?

• iOS 8 (2014) dynamic linking made available for “App Extensions”

• Swift Language debut (2014)

• Swift open sourced with initial Linux port (December 2015)

• Swift 3.0 just released (fall 2016)

LuaCocoa is Sleeping
• Not dead

• Very personal to me so won’t go away

• But not a high priority due to the current
environment

• Contributions still welcome

• Need stuff? Contact me

bno

• IUP is a cross-platform native GUI library from
Tecgraf/PUC-Rio (where Lua is from)

• Small, lightweight, native, fast

• Native Windows support

• GTK2, GTK3, Motif for Linux, etc

• But no Cocoa…

Off topic (Call for Help):
IUP (cross-platform GUI library)

Windows Linux

Mac
 (IUP Cocoa)

Call to Arms
IUP for Cocoa

• We can make this happen!

• Stepping stone to iOS implementation

• Then Android

• IUP abstraction may already be far enough to deal with mobile-isms

• No “Window” type, but “Dialog”

• Lua bindings are first class citizens in IUP

• Pure C API means other languages can benefit too

• Looking for volunteers, funding, or companies to sponsor or drive

Links
• LuaCocoa

• http://playcontrol.net/opensource/LuaCocoa

• Eric Wing (@ewingfighter)

• Website: http://playcontrol.net

• YouTube: https://www.youtube.com/user/ewmailing

• Now playing: “Why we loved Sierra Games”

• Blurrr SDK (my current project)

• https://BlurrrSDK.com, @BlurrrSDK

• IUP Cocoa (use Cocoa branch)

• https://github.com/ewmailing/IupCocoa

• GIST Cancer Research Fund

• http://www.gistinfo.org

http://www.gistinfo.org

