
Lua Workshop 2016
Jamie A. Jennings, Ph.D.
IBM Cloud CTO Office
October, 2016

Regex Considered Harmful:
Use Rosie Pattern Language Instead

These slides describe work I have done for my employer, IBM, but
I am speaking here only for myself, not for IBM.

Disclaimer:

3

Problem space
“Every day, we create 2.5 quintillion bytes of data” IBM

“But most of it is like cat videos on YouTube” Nate Silver

Estimates are that less than 0.5% of data is ever analyzed!

(Antonio Regalado, MIT Technology Review, https://www.technologyreview.com/s/514346/the-data-made-me-do-it/)

DevOps	Analytics	Team:	
applying	machine	learning	and	other	analytics	to	DevOps	data
to	improve	quality	and	efficiency	of	software	development

• Logs
• Events
• Metrics

• Logs
• Events
• Metrics

• Logs
• Events
• Metrics

• Logs
• Events
• Metrics

• Logs
• Events
• Metrics

• Logs
• Events
• Metrics

• Logs
• Events
• Metrics

• Logs
• Events
• Metrics

DevOps Analytics Platform (includes Rosie)

Root cause
Analysis

Anomaly
Detection

Impact
Analysis

Business
Results

Web Experience
Analysis

A/B Testing
Analysis

Usage Patterns
Recognition

Correlation between
Usage Patterns and
Business Risk /
Growth Opportunities

Business
data

Business
Objectives

Business
data

Business
Analytics

In:

Out:

5

Disclaimer: This is a manager slide

16/02/08 10:14:33 INFO SparkContext: Running Spark version 1.6.0
16/02/08 10:14:33 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java
[...]
16/02/08 10:14:38 ERROR Executor: Exception in task 1.0 in stage 5.0 (TID 10)
java.lang.NullPointerException

at org.apache.spark.sql.types.Metadata$.org$apache$spark$sql$types$Metadata$$toJsonValue(Metadata.scala:185)
at org.apache.spark.sql.types.Metadata$$anonfun$2.apply(Metadata.scala:172)
at org.apache.spark.sql.types.Metadata$$anonfun$2.apply(Metadata.scala:172)
at
scala.collection.TraversableLike$$anonfunmap1.apply(TraversableLike.scala:244)

[...]
16/02/08 10:14:38 INFO DAGScheduler: Job 4 failed: collect at
/home/al/dev/git/devopsrca/pydevops/devops/test/rca_test.py:23, took 0.138982 s
Traceback (most recent call last):
File "/home/al/dev/git/devopsrca/pydevops/devops/test/rca_test.py", line 23, in <module>
print ind.collect()

File "/opt/spark-1.6.0-bin-hadoop2.6/python/pyspark/sql/dataframe.py", line 280, in collect
port = self._jdf.collectToPython()

File "/opt/spark-1.6.0-bin-hadoop2.6/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__
File "/opt/spark-1.6.0-bin-hadoop2.6/python/pyspark/sql/utils.py", line 45, in deco
return f(*a, **kw)

Log files: many formats, often mixed in the same file

E.g. Apache Spark logs contain “standard” entries mixed with Java exceptions and Python tracebacks

6

How to spend data science effort? 1. Get data

2. Write
code/expressions

to parse data

3. Test and
correct parser

4. Annotate data
with semantic

tags

5. Write code to
normalize values

6. Write code to
correlate entries

7. Calculate
meta-data

(enumerations,
ranges, etc.)

8. Perform
analytics

Goal:
get right
to the
analytics!

• Recurring estimate: 80% of analysis effort is preparing the data
• Much of the world’s data is unstructured or semi-structured
• Therefore, much of the world’s data needs to be:

• Parsed to extract the useful bits

• Annotated and labeled
• Normalized to standard formats
• Sanitized to hide sensitive bits
• And correlated with related bits of information

7

The key issue is scale:
ü Lots of data formats (“variety”)
ü Lots of data (“volume”)
ü Near-real-time requirements (“velocity”)

Current approaches
“If the only tool you have is a hammer…” Abraham Maslow

Grok’s networking patterns
Networking

MAC (?:%{CISCOMAC}|%{WINDOWSMAC}|%{COMMONMAC})

CISCOMAC (?:(?:[A-Fa-f0-9]{4}\.){2}[A-Fa-f0-9]{4})

WINDOWSMAC (?:(?:[A-Fa-f0-9]{2}-){5}[A-Fa-f0-9]{2})

COMMONMAC (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2})

IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-
4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-
9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-
4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-
5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\d\d|[1-
9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-
4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\d|1\d\d|[1-
9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:)))(%.+)?

IPV4 (?<![0-9])(?:(?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-
9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2}))(?![0-9])

IP (?:%{IPV6}|%{IPV4})

HOSTNAME \b(?:[0-9A-Za-z][0-9A-Za-z-]{0,62})(?:\.(?:[0-9A-Za-z][0-9A-Za-z-]{0,62}))*(\.?|\b)HOST %{HOSTNAME}

IPORHOST (?:%{HOSTNAME}|%{IP})

HOSTPORT %{IPORHOST}:%{POSINT}

9

Regex issue #1: Notoriously hard to read & maintain
§ Unmaintainable dense, cryptic syntax
§ Un-composable expressions
§ Not portable across implementations

10

Regex issue #2: Performance is highly variable
“The worst-case exponential-time backtracking strategy [is] used almost everywhere else,
including ed, sed, Perl, PCRE, and Python.” (Russ Cox https://swtch.com/~rsc/regexp/regexp2.html)

E.g. matching this 29-character string takes around 36 seconds in Perl*
$input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”;
$re =“a?aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”;

And this real-world example takes around 65 seconds in Perl*
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,Bronze,Bronze,Gold,Silver”;
$re = “^(.*?,){29}Gold”;

“Some people, when confronted with a problem,
think ‘I know, I'll use regular expressions.’

Now they have two problems.”
(Jamie Zawinski, http://regex.info/blog/2006-09-15/247)

Regex considered harmful (at scale)

Lessons

(1) Do not use in a big data pipeline

– Not implemented efficiently; performance highly variable
– Limited portability; tied to the necessary scaffolding (Perl, Python, Ruby, Java, js, …)

(2) Avoid long expressions

– Dense syntax; hard to read; nearly impossible to maintain
– But composition is fraught!

(3) Avoid large collections of expressions

– Dense syntax; hard to read; nearly impossible to maintain
– Semantics and capabilities vary across implementations

11

Rosie Pattern Language
“All progress depends on the unreasonable [woman]”

George Bernard Shaw, paraphrased

{"syslog" : {"text" : "2015-08-23T03:36:30-05:00 10.91.62.208 pluto[10991]: \"ui1_db1\" #80338: max number of [...]",
"pos" : 1,
"subs" : [{"datetime.datetime_RFC3339" : {"text" : "2015-08-23T03:36:30-05:00",

"pos" : 1,
"subs" : [{"datetime.full_date_RFC3339" : {"text" : "2015-08-23",

"pos" : 1 } },
{"datetime.full_time_RFC3339" : {"text" : "03:36:30-05:00",

"pos" : 12 } }] } },
{"network.ip_address" : {"text" : "10.91.62.208",

"pos" : 27 } },
{"process" : {"text" : "pluto[10991]",

"pos" : 40,
"subs" : [{"common.word" : {"text" : "pluto",

"pos" : 40 } },
{"common.int" : {"text" : "10991",

"pos" : 46 } }] } },
{"MAX" : {"text" : "\"ui1_db1\" #80338: max number of retransmissions (20) reached STATE_R1",

"pos" : 54,
"subs" : [{"common.identifier_plus" : {"text" : "ui1_db1",

"pos" : 55 } },
{"common.int" : {"text" : "80338",

"pos" : 73 } }] } }] } }

Rosie Pattern Engine

13

RPL is designed
like a programming
language

14
RPL Language Reference

(Github)

With closures!

Common syntactic patterns
(Dates, hosts, URLs, etc.)

Rosie Pattern Engine

SYSLOG
patterns

A
pp

 A
B

C
 lo

gs

A
pp

 X
Y

Z
lo

gs

S
al

es
 d

at
a,

 e
.g

.

Pattern Generators

Im
po

rt
R

eg
E

x/
G

ro
k

D
om

ai
n

S
pe

ci
fic

M
ac

hi
ne

 L
ea

rn
in

g

R
os

ie
 P

at
te

rn

La
ng

ua
ge

Online
(Run-time)

Offline

P
at

te
rn

 G
en

er
at

io
n

G
U

I

Rosie

Rosie Pattern Language
(pattern definitions)

Architecture
RPL Pattern
Generators

are a focus of
ongoing work

• Rosie Pattern Language compiler and runtime
• Lua interpreter, Parsing Expression Grammar and JSON libraries
• TOTAL: ~350 KB binary on disk, ~2.5 MB in memory

RPL
patterns are
loaded into
the Rosie
Pattern
Engine

15

INFO: 2023 * Client in-bound response
2023 < 200
2023 < Content-Length: 3714
2023 < Date: Mon, 30 Mar 2015 06:01:26
2023 < Connection: keep-alive
2023 <
{"stacks": [{"description": "A document-
based template to configure your Software
Defined Environment.\n", "links": [{"href":
"http://9.32.152.95:8004

Spark,
Kafka,

Cassandra,
etc.

INPUT: Raw data

OUTPUT: Tidy data
in JSON structures,
ready for analysis

Rosie Pattern
Engine

Run-time view

Patterns

Demo
“I want to believe” Fox Mulder, FBI

Highlights of Rosie Pattern Language (1)

Patterns are written like programs
• To match a literal string, put it in quotes
• Otherwise, it’s an identifier
• Identifiers are defined using assignment

statements
• When an identifier used within a pattern is

matched, it appears as a sub-match in the
output

Read/eval/print loop
prompt

(for interactive
pattern development)

Shorthand version of
JSON output contains:

Pattern name, position in
input, matching text, and

sub-matches

Pattern to match Input to match
against

Notes
1. Patterns entered at the command line do not have names, so they are

represented by a “*” in the output in place of a name
2. A named pattern, such as “h” in this example, becomes a sub-match
3. A pattern is allowed to match a prefix of the input text

17

RPL Patterns share a lot with regular expressions
• $. * ? + and bounded repetition, for example
• Character sets such as [:alpha:] and [A-F]

Some differences are:
• The choice operator is “/” and is ordered choice
• Parentheses are for grouping only
• Tokenization is automatic, but is disabled for

expressions inside curly braces {…}
(And in other places where tokenizing would be the wrong
thing to do, e.g. quantified expressions like d+. Generally,
Rosie tries to “do the right thing”.)

Ask Rosie what is the
definition of the

identifier “d”

Notes
1. There are hundreds of patterns in the RPL library
2. The RPL tokenizer behaves much like the word boundary operator in

regex, where it must be explicitly written as \b
3. The parentheses in (d{2,3})+ are needed for proper tokenization
4. Without curly braces, the pattern “9” d d will match a 9 followed by two

more digits as separate tokens

This pattern matches
a sequence of exactly

2 or 3 digits

By adding a “+”, we
can match one or

more of the 2-or-3-
digit sequences

This pattern says:
Match a “9” followed by 2

more digits, OR (if that
fails) match everything

Highlights of Rosie Pattern Language (2)

18

19

RPL Patterns are typically saved in files
• The Rosie Pattern Engine reads (and

compiles) RPL files
• There are hundreds of useful patterns

available in RPL packages, including:
• Timestamps in various formats
• Network addresses, paths
• Various log file formats
• Numbers, identifiers, etc.

An excerpt from rpl/network.rpl in the Rosie distribution: Comments start
with a double dash.
Note also the ability

to use whitespace
for readability

Note: Rosie does parse out the month, day, year, etc. separately. Those sub-
matches are not shown here for clarity.

Highlights of Rosie Pattern Language (3)

The command-line interface to the Rosie Pattern
Engine reads pattern definitions from RPL files,
and matches against input from files

The “patterns”
option lists the

patterns loaded, and
the color in which

matches will appear

Any text can be
used as input

This pattern finds
lines that start with a
word followed by a

network address

Notes
1. There are hundreds of patterns in the RPL library
2. The single quotes on the command line prevent the shell from

interpreting characters (such as dot) in the RPL pattern
3. Rosie Pattern Engine generates JSON. The JSON is converted

to just the matching text and printed in color because this is
easier to read in a terminal window

4. In this example:
• Punctuation prints in black
• Words print in yellow, and likely identifiers in cyan
• Network addresses print in red
• Numbers, including hex, print as underlined

Basic.matchall is
pattern that looks for a few
dozen common patterns,

anywhere in the input

Highlights (4): CLI

20

The Rosie Pattern Engine has a read/eval/print loop that
can be used to develop and test patterns. Existing
patterns are available, and new patterns can be defined.
A detailed trace explains how a pattern matches (or
fails) against sample input.

A pattern name evaluates
to its definition, which

Rosie then displays
The input “0x3C”

matches
common.number,
generating a match

structure

Notes
1. The “.eval” command always produces a trace, whether the

match succeeds or fails.
2. The “.match” command by default prints a trace when a match

fails.
3. The effect of automatic tokenization is shown explicitly in the

trace output, where Rosie shows the step of matching
BOUNDARY (the inter-token boundary).

4. In this example, Rosie looks for BOUNDARY only after the
common.number is matched, and the end of the input
successfully matches BOUNDARY.

The “.eval” command takes
the same arguments as

“.match” and prints a trace
(highlighted at left) of the

matching process

Highlights (5):
Interactive Pattern

Development

21

Notes
1. The basic.matchall pattern can be used to

quickly see what Rosie can already
recognize in an input file

2. Then, more complex patterns can be
assembled interactively using existing
patterns

3. Here, the input files are Apache Spark logs
4. The logs contain a mix of Python and Java

information

Output generated using this RPL code

RPL code written to parse Apache Spark logs

RPL for root cause analysis

22

Implementation
“Simplicity does not precede complexity, but follows it.” Alan Perlis

RPL is a language of parser combinators

Parser combinators are
– Recursive descent parsers
– Based on higher order functions
– Considered easy to read
– Often used to parse CFLs

Rosie Pattern Language
– Recognizes deterministic CFLs
– Combinators are:

§ Sequence
§ Ordered choice
§ Quantified expressions
§ Predicates: look ahead, look behind, negation

– Tokenized (“cooked”) and untokenized (“raw”) expressions

24

Patterns in the RPL library (at present)

§ Basic
– number, identifier, word, and more
– and quoted/bracketed versions

§ Commonly used and specific
– int, float, hex, and other numbers
– several kinds of identifiers
– path names for Unix and Windows
– GUIDs

§ Network patterns
– ip address, domain name, email address,

http url and commands

§ Timestamps
– RFC3339, RFC2822, and more than a dozen

other common formats

§ CSV data
– delimiters: , ; |
– quoted fields: “foo” or ‘bar’
– escapes: "" or \" or \"\”

§ JSON data
– full parse, or
– match nested and balanced {} []

§ Log files
– syslog constituents (covers most log files)
– Java exceptions, Python tracebacks

§ Source code (micro-grammar approach)
– Extract line and block comments
– Extract code (no comments)
– Python, Ruby, Perl, js, Java, Perl, C, C++, …

25

Performance

26

se
co
nd
s

input size (# log entries)

Lua and LPEG get the credit for this.
(I needed only to get out of the way.)

Rosie

JGrok

Grok

Single threaded!
Few optimizations!

(0.5M) (2M)

Other capabilities, current and forthcoming

27

§ Lexical scope (nested environments)
§ Modules have their own environments

with import/export controls (forthcoming)

§ “Macros” (i.e. pattern generating
functions)

– Have Lua functions for AST à AST
– Need more experimentation

§ Post-processing instructions (forthcoming)
– Match à Match
– Lua as extension language
– Uses include

§ Format conversion
§ Sanitizing and anonymizing
§ Meta-data collection

Language

§ Self-hosting
– Allows easy language modifications
– A compiler extension interface would allow

language extensions
§ Interfaces: API, CLI, REPL

– Native APIs in C and Lua
– C API is auto-generated from Lua API

§ Foreign function interface: librosie
– Sample clients in

Python, Perl, Ruby, js, Go, …
Lua???

– Grok replacement (for ELK stack)
§ Output generator is a Lua function
§ Persist compiled patterns to disk (forthcoming)

§ More debugging capabilities (forthcoming)

Implementation

Exploring lpeg
enhancements to

support RPL
pattern debugging

Conclusion

28

§ Rosie Pattern Language
– Designed for parsing “in the large”
– More expressive than regex
– With in-line automated tokenization
– And many features commonly found in programming languages

§ Rosie Pattern Engine
– Small (~ 350 KB on disk, ~ 2.5 MB memory) and relatively fast (around 4x competition)
– With pattern development tools

§ REPL
§ Debugger

“Eval” (interpreter) shows full match trace
Future: breakpoints, single step, single identifier trace

– Implemented in Lua, using LPEG
– Released as open source in February, 2016

The End
“Turn out the lights, the party’s over” Willie Nelson, “The Party’s Over”

Open Source Software, MIT License

Github (public) https://github.com/jamiejennings/rosie-pattern-language/

IBM developerWorks Open (tutorials, blog) https://developer.ibm.com/open/rosie-pattern-language/

Implementation details (v0.92b)

30

Component Implementation language Description Location

“Sample” RPL patterns Rosie Pattern Language (RPL) 100’s of patterns:
• Numbers, identifiers
• Network, email addrs
• Many dates & times
• Syslog elements
• Etc.

Public github
MIT License

https://github.com/jamiejennings/rosie-
pattern-language/tree/master/rpl

Rosie REPL
Rosie CLI
Rosie Debugger

Lua ~ 600 lines of Lua code
~ 25 lines of RPL
These leverage the API

Public github
MIT License

https://github.com/jamiejennings/rosie-
pattern-languageRosie API Native: Lua, C

Others: via libffi
~ 20 functions

Rosie Compiler Lua
(parser in RPL, bootstrap in Lua/LPEG)

~ 1300 lines of Lua code
~ 60 lines of RPL

LPEG
CJSON

ANSI C Lua PEG library ~ 46 Kb
Lua JSON library ~ 54 Kb

Public web, MIT License
http://www.inf.puc-rio.br/~roberto/lpeg/

Lua ANSI C Lua interpreter ~ 224 Kb Public web, MIT License
http://lua.org

rprint (awk-like processing of Rosie json output)
bash-3.2$ rosie -encode json -wholefile py.line_comments_only sklearn/utils/validation.py |
rprint 'for i=1,NF do print($i); end’
Authors: Olivier Grisel
Gael Varoquaux
Andreas Mueller
Lars Buitinck
Alexandre Gramfort
Nicolas Tresegnie
License: BSD 3 clause
Silenced by default to reduce verbosity. Turn on at runtime for
performance profiling.
First try an O(n) time, O(1) space solution for the common case that
everything is finite; fall back to O(n) space np.isfinite to prevent
false positives from overflow in sum method.
is numpy array
Don't get num_samples from an ensembles length!
force an upcast to `long` under Python 2
special notation for singleton tuples
create new with correct sparse # convert dtype # force copy
store whether originally we wanted numeric dtype
not a data type (e.g. a column named dtype in a pandas DataFrame)
if input is object, convert to float.
no dtype conversion required # dtype conversion required. Let's select the first element of the
list of accepted types.
To ensure that array flags are maintained
make sure we actually converted to numeric:
only csr, csc, and coo have `data` attribute # FIXME NotFittedError_ --> NotFittedError in 0.19
bash-3.2$

31

Rosie Pattern Engine API

§ Engine management
– New engine
– Configure engine
– Delete engine
– Query engine configuration
– Query engine environment
– Future: Set logging level

§ Environment (per engine)
– Load string (RPL definitions)
– Load file (RPL definitions)
– Load manifest (files of RPL definitions)
– Erase environment

§ Matching (per engine)
– Match against string
– Match against file

§ Debugging (per engine)
– Eval against input string (full trace)
– Eval against input file (full trace)
– Future:

§ Trace single identifier (combinator)
§ Breakpoint

32

Rosie is self-hosting

§ Rosie is a parser, and Rosie is used to parse Rosie Pattern Language

§ About 60 lines of RPL (core) to define the current RPL (v0.99)

§ Capabilities (e.g. syntax error reporting) made for RPL itself can be applied to user patterns,
and vice-versa (e.g. macros)

§ Ability to support multiple versions of RPL, even different dialects

§ Non-trivial user extensions to RPL can be had by:
– Specifying RPL for the extension (to RPL)
– Writing a compiler “plug-in” for the extension
– The compiler plug-in interface has not yet been designed

33

Tokenization is non-trivial

§ Token boundary
– Token boundary is denoted “~”
– Has a default value (approx. \b)
– Default is idempotent
– Is redefinable!
– User’s definition may not be

idempotent

§ Requires careful implementation

§ E.g. implementation of (p)* in Lua/lpeg:
peg = (p * (~ * p)^0)^-1

34

a a a~a
(a a) a~a
{a a} aa

a+ aaaa...a
a+ b aaaa...a~b

(a)+ a~a~a~a~...~a
(a)+ b a~a~a~a~...~a~b

(a / b) a
b

(a / b) c a~c
b~c

{{a / b} c} ac
bc

{(a / b) c} ??? à Same as {{a / b} c}

(a b)+ a~b~a~b~...a~b
{a b}+ ababab...ab

(a b)+ c a~b~a~b~...~c
{a b}+ c abab...ab~c

RPL Meaning

Parsing Expression Grammars

§ Rosie’s operators
– Parsing Expression Grammars
– Instead of CFG or regex
– Express all deterministic CFLs
– And some non-CFLs, e.g. anbncn

§ PEGs [Ford, 2004]
– Scanner-less parsing
– Compare to regular expressions

§ Greedy quantifiers: *, +, ?
§ Ordered choice operator: /
§ Predicates: “looking at”, “not looking at”

– Linear time algorithms
– Languages recognized by PEGs are

§ A superset of regular languages
§ All languages recognized by LL(k) and LR(k) parsers

35

Infinite loop in Perl RE?

§ Claimed on stack exchange that this regex never terminates?
– See ‘man perlre’
– 'foo' =~ m{ (o?)* }x;
– “Perl has special code to detect infinite recursion in this case and break out.”
– Alex Brown Dec 7 '10 at 16:09

§ http://stackoverflow.com/questions/4378455/what-is-the-complexity-of-regular-expression

36

