Regex Considered Harmful:

Use Rosie Pattern Language Instead
Lua Workshop 2016

Jamie A. Jennings, Ph.D.
IBM Cloud CTO Office
October, 2016

Disclaimer:

These slides describe work | have done for my employer, IBM, but
| am speaking here only for myself, not for IBM.

Estimates are that less than O 50/0 of data is ever analyzed!

(Antonio Regalado, MIT Technology Review, https://www.technologyreview.com/s/514346/the-data-made-me-do-it/)

,
DevOps Analytics Team:

applying machine learning and other analytics to DevOps data
to improve quality and efficiency of software development

ToRTATaTE T T m -8 B

Business Development SCM Build Package Deploy Test Stage Business
Objectives Repo Results

Business * Logs * Logs * Logs * Logs + Logs * Logs + Logs « Logs Business
data * Events * Events * Events * Events * Events Events * Events * Events data
[* Metrics * Metrics * Metrics * Metrics « Metrics * Metrics « Metrics * Metrics

DevOps Analytics Platform (includes Rosie)

I T T A T A

Root cause Impact Anomaly Web Experience A/B Testing Usage Patterns Correlation between Business
Analysis Analysis Detection Analysis Analysis Recognition Usage Patterns and Analytics
Business Risk /
5 Growth Opportunities

Log files: many formats, often mixed in the same file

E.g. Apache Spark logs contain “standard” entries mixed with Java exceptions and Python tracebacks

16/02/08 10:14:33 INFO SparkContext: Running Spark version 1.6.0

16/02/08 10:14:33 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java
[-.-]

16/02/08 10:14:38 ERROR Executor: Exception in task 1.0 in stage 5.0 (TID 10)

java.lang.NullPointerException
at org.apache.spark.sqgl.types.Metadata$.org$Sapache$spark$sqglStypes$Metadata$stodsonvalue (Metadata.scala:185)

at org.apache.spark.sql.types.Metadata$$Sanonfun$2.apply(Metadata.scala:172)
at org.apache.spark.sql.types.Metadata$Sanonfun$2.apply(Metadata.scala:172)
at
scala.collection.TraversableLike$$anonfun$Smap$l.apply(TraversableLike.scala:244)
[o-.]
16/02/08 10:14:38 INFO DAGScheduler: Job 4 failed: collect at
/home/al/dev/git/devopsrca/pydevops/devops/test/rca test.py:23, took 0.138982 s
Traceback (most recent call last):
File "/home/al/dev/git/devopsrca/pydevops/devops/test/rca test.py", line 23, in <module>
print ind.collect()
File "/opt/spark-1.6.0-bin-hadoop2.6/python/pyspark/sqgl/dataframe.py", line 280, in collect
port = self. jdf.collectToPython()
File "/opt/spark-1.6.0-bin-hadoop2.6/python/lib/py4j-0.9-src.zip/py4j/java gateway.py", line 813, in _ call
File "/opt/spark-1.6.0-bin-hadoop2.6/python/pyspark/sql/utils.py", line 45, in deco
return f(*a, **kw)

How to spend data science effort? - .

« Recurring estimate: 80% of analysis effort is preparing the data
* Much of the world’s data is unstructured or semi-structured
» Therefore, much of the world’s data needs to be:

* Parsed to extract the useful bits

* Annotated and labeled

* Normalized to standard formats

* Sanitized to hide sensitive bits

* And correlated with related bits of information

The key issue is scale:
v Lots of data formats (“variety”)
v Lots of data (“volume”)

2. Write
code/expressions
to parse data

1

3. Test and
correct parser

|

4. Annotate data
with semantic
tags

5. Write code to
normalize values

|

6. Write code to
correlate entries

[|

7. Calculate
meta-data
(enumerations,
ranges, etc.)

\

Goal:

A

get right

to the

analytics!

/

v Near-real-time requirements (“velocity”) - ’
7

7

i

/

i

-_— e ==

!

Current approaches

“If the only tool you have is a hammer...” Abraham Maslow

Grok’s networking patterns

Networking

MAC (?:%{CISCOMAC}|%{WINDOWSMAC}|%{COMMONMAC})
CISCOMAC (?:(?:[A-Fa-f0-9[{4}\.{2}[A-Fa-f0-91{4})
WINDOWSMAC (?:(?:[A-Fa-f0-91{2}-){5}[A-Fa-f0-9K2})
COMMONMAC (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-91{2})

IPV6 ((([0-9A-Fa-f{1,4}:{7}([0-9A-Fa-fl{1,4}:))|(([0-9A-Fa-fi{1,4}:){6}(:[0-9A-Fa-fl{1,4}|((25[0-5]|2[0-4]\d| 1\d\d|[1-9]\d)(\.(25[0-5]| 2[0-
AN 1\A\D|[1-9]2\d) {31 ([0-9A-Fa-fi{1,4}:){5}(((:[0-9A-Fa-f{1,4})}{1,2})|:((25[0-5]2[0-41\d| 1\d\d|[1-9]\d)(\.(25[0-5] | 2[0-4]\d | 1\d\d|[1-
912\d)){3})|:))I(([0-9A-Fa-fl{1,4}: {4}(((:[0-9A-Fa-f{1,4}){1,3})|((:[0-9A-Fa-fl{1,4})?:((25[0-5]|2[0-4]\d| 1\d\d|[1-9] \d)(\.(25[0-5]|2[0-

AN 1\A\|[1-9]2\d)}{3}))]:))I(([0-9A-Fa-f{1,4}: {3}(((:[0-9A-Fa-fl{1,4}){1,4})|((:[0-9A-Fa-f{1,4}}{0,2}:((25[0-5]|2[0-4]\d| 1\d\d|[1-9] 2\d)(\.(25[O-
5]12[0-41\d| 1\d\d|[1-9]2\d))}{3}))|:))I(([0-9A-F a-f{1,4}: X2} (((:[0-9A-Fa-fl{1,4}){1,5))|((:[0-9A-Fa-f{1,4}}{0,3}:((25[0-5]|2[0-4]\d| 1\d\d]|[1-
9]2\d)(\.(25[0-512[0-41\d| 1\d\d|[1-9]2\d))}{3}))|:))] ([0-9A-Fa-fI{1,4}: ¥ 1}(((:[0-9A-Fa-fl{1,4}){1,6})|((:[0-9A-Fa-fl{1,4}){0,4}:((25[0-5]|2[0-
A0d|1\d\d|[1-9]2\d)(\.(25[0-5]|12[0-4]\d| 1\d\d|[1-9]2\d) {3}))|:)| :(((:[0-9A-Fa-fI{1,4}){1,7})|((:10-9A-Fa-fl{1,4}}{0,5}:((25[0-5]|2[0-4]\d| 1\d\d|[[1-
9]2\d)(\.(25[0-5]|2[0-4]\d| 1\d\d|[1-9]2\d) {3}))[:)))(%.+)?

IPV4 (?<![0-9])(?:(?:25[0-5]|2[0-41[0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]| 2[0-4][0-9]|[0-1] ?[0-9{ 1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-
91{1,2})[1(?:25[0-5]|2[0-4]{0-9]|[0-1]?[0-9]{1,2}))(*![0-9])

IP (2:%{IPV6}|%{IPV4})

HOSTNAME \b(?:[0-9A-Za-z][0-9A-Za-z-}{0,62})(?:\.(?:[0-9A-Za-z][0-9A-Za-z-}{0,62}))*(\.?|\b)HOST %{HOSTNAME}
IPORHOST (?:%{HOSTNAME}|%{IP})

HOSTPORT %{IPORHOST}:%{POSINT}

Regex issue #1: Notoriously hard to read & maintain

= Unmaintainable dense, cryptic syntax “Some people, when confronted with a problem,
= Un-composable expressions think ‘I know, I'll use regular expressions.’
= Not portable across implementations Now they have two problems.”

(Jamie Zawinski, http://regex.info/blog/2006-09-15/247)

Regex issue #2: Performance is highly variable

“The worst-case exponential-time backtracking strategy [is] used almost everywhere else,
including ed, sed, Perl, PCRE, and Python.” (Russ Cox https://switch.com/~rsc/regexp/regexp2.html)

E.g. matching this 29-character string takes around 36 seconds in Perl*
Sinput = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’;
$re =“a?aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’;

And this real-world example takes around 65 seconds in Perl*
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 26,Bronze,Bronze,Gold, Silver’;
$re = “M.*?,){29}Gold”;

10

Regex considered harmful (at scale)

Lessons

(1) Do not use in a big data pipeline
— Not implemented efficiently; performance highly variable
— Limited portability; tied to the necessary scaffolding (Perl, Python, Ruby, Java, js, ...)

(2) Avoid long expressions
— Dense syntax; hard to read; nearly impossible to maintain
— But composition is fraught!

(3) Avoid large collections of expressions
— Dense syntax; hard to read; nearly impossible to maintain
— Semantics and capabilities vary across implementations

11

Rosie Pattern Language

“All progress depends on the unreasonable [woman]’

George Bernard Shaw, paraphrased

Rosie Pattern Engine

2015-08-23T03:36:25-05:
H2015-08-23T03:36:30-05:
2015-08-23T03:36:31-05:
2015-08-23T03:36:31-05:
2015-08-23T03:36:31-05:
2015-08-23T03:36:31-05:
2015-08-23T03:36:31-05:

10.108.69.93
10.91.62.208
10.91.62.206
10.91.62.206
10.91.62.206
10.91.62.206
10.91.62.206

sshd[16537]: Did not receive identification string from 208.43.117.11

emerald[10991]: "uil_dbl" #80338: max number of retransmissions (20) reached STATF ~

emerald[1084]: "uil db2" #85168: discarding duplicate packet; already STATE_I? 0
emerald[1084]: "uil _dbl" #84039: next payload type of ISAKMP Hash Payloar - ? el 211
emerald[1084]: "uil _dbl" #84039: malformed payload in packet \“

emerald[1084]: "uil dbl" #84039: next payload type of ISAKMP Hash Payloaa .«nown value: 196
emerald[1084]: "uil _dbl" #84039: malformed payload in packet

{"syslog" {"text" "2015-08-23T03:36:30-05:00 10.91.62.208 pluto[10991]: \"uil dbl\" #80338: max number of [...]",
"pos" : 1,
"subs" [{"datetime.datetime_RFC3339" {"text" "2015-08-23T03:36:30-05:00",
"pos" : 1,
"subs" [{"datetime.full_date_RFC3339" {"text" "2015-08-23",
"pos” 13} }
{"datetime.full_ time RFC3339" {"text" : "03:36:30-05:00",
"pos" : 12 } } 1} },
{"network.ip_ address" {"text" "10.91.62.208",

{"process"

{"MAX"

13

S\

"pos" : 27 } },
{"text" "pluto[109911", ,‘
"pos" : 40,
"subs" [{"common.word" {"text" "pluto”, 0
"pos" : 40 } },
{"common.int" {"text" "10991",
"pos" : 46 } } 1} },
{"text" "\"uil dbl\" #80338: max number of retransmissions (20) reached STATE R1",
"pos" : 54,
"subs" : [{"common.identifier_ plus" {"text" "uil dbl",
"pos" : 55 } },
{"common.int" {"text" : "80338",
"pos" : 73} } 1} } 1} }

RPL is designed
like a programming
language

RPL Language Reference
14 (Github)

———— —%— Mode: rpl; —*-

———— json.rpl

———— © Copyright IBM Corporation 2016.

some rpl patterns for processing json input

—— Match against 'json' to capture a json value

json.String = Il\llll {II\\\IIII / {| [\n] .}}* ||\||n

alias json.int = { [-]? {[1-9][0-9]+} / [@-9] }
alias json.frac = { [.] [0-9]+ }

alias json.exp = { [eE] [+]? [0-9]+ }
json.number = { json.int json.frac? json.exp? }

json.true = "true"
json.false = "false"
json.null = "null"

grammar
alias json.value = json.string /
json.number /
json.object /

json.array /

json.true /

json.false /

json.null
json.member = json.string ":" json.value
json.object = "{" (json.member ("," json.member)x)? "}"
json.array = "[" (json.value ("," json.value)x)? "]"

end

json = json.value

Run-time view ttRPL] RPL Pattern
patterns are Generators
INPUT: Raw data loaded into ArCh IteCtu re are a focus of
12?:12'? 22(())2””» * Client in-bound response thF,eaEeOrSr:e Ongo|ng Work
2023 < Content-Length: 3714 — :
3 e puine Engine Rosie Pattern Language
b o -\\) (pattern definitions)
Defined Ell\ll:&vl]l]}cll\. ;”‘ "links": [;"h;cih“: \ 2)
"http://9.32.152.95:8004 (@)
g\ o ,
< X< ol =
g & 5 . g 2 9
S veios | 8 23 .88 5 3
. YSL © T ® O 2 o c_
Rosie Pattern — - F - - —» patterns | & o5 8—5 2 2 I8 3
Enai LelE|w||L|le
ngine . » T a|l| g||E||5
Common syntactic patterns ° X s g 2
OUTPUT: Tidy data (Dates, hosts, URLSs, etc.) oll=|IF
in JSON structures,
ready for analysis . .
Y Y Rosie Pattern Engine Pattern Generators
Online . Offline
Spark, INTRITE) O (4

Kafka,
Cassandra,
etc.

* Rosie Pattern Language compiler and runtime
* Lua interpreter, Parsing Expression Grammar and JSON libraries

* TOTAL: ~350 KB binary on disk, ~2.5 MB in memory

15

Demo

Fox Mulder, FBI

“l want to believe”

Highlights of Rosie Pattern Language (1)

Read/eval/print loop
prompt
(for interactive
pattern development)

Shorthand version of
JSON output contains:
Pattern name, position in
input, matching text, and
sub-matches

Input to match
against

Pattern to match

LRosie> .match "Hello", "Hello world"
[*:
[pos: 1,
text: "Hello",

Warning: unmatched characters at end of input
Rosie> h = "Hello"
Rosie> .match h "world", "Hello world"
[*:
[pos: 1,
text: "Hello world",
subs:
[1: [h:
[pos: 1,
text: "Hello",
subs:
(111111

Rosie>

Patterns are written like programs

To match a literal string, put it in quotes
Otherwise, it’s an 1dentifier

Identifiers are defined using assignment
statements

When an identifier used within a pattern is
matched, it appears as a sub-match in the
output

Notes

1. Patterns entered at the command line do not have names, so they are
represented by a “*” in the output in place of a name

2. A named pattern, such as “h” in this example, becomes a sub-match

3. A pattern is allowed to match a prefix of the input text

Ask Rosie what is the
definition of the
identifier “d”

Rosie> d
alias d = [:digit:]
Rosie> .match d+, "996"

[*:

[POS: 1, This pattern matches
text: "996", a sequence of exactly
subs: 2 or 3 digits

[111

Rosie> .match d{2,3}, "996"
[x:
[pos: 1,
text: '"996",
subs:

[111
Rosie> .match (d{2,3})+, "996 901 54"
[x:

[pos: 1,
text: "996 901 54",
subs:

[111
Rosie> .match
[*:

[pos: 1,
text: '"996",
subs:

[111

ning: unmatched characters at end of input

ie>

By adding a “+”, we
can match one or
more of the 2-or-3-
digit sequences

[{"9" d d} / .*} "996 901 54"

This pattern says:

more digits, OR (if that

fails) match everything

W
R

RPL Patterns share a lot with regular expressions
* $.*?+ and bounded repetition, for example
* Character sets such as [:alpha:] and [A-F]

Some differences are:
* The choice operator is “/” and is ordered choice
» Parentheses are for grouping only
» Tokenization is automatic, but is disabled for
expressions inside curly braces {...}

(And in other places where tokenizing would be the wrong

thing to do, e.g. quantified expressions like d+. Generally,
Rosie tries to “do the right thing”.)

Match a “9” followed by 2

1 There are hundreds of patterns in the RPL library

2. The RPL tokenizer behaves much like the word boundary operator in
regex, where it must be explicitly written as \b

3. The parentheses in (d{2,3})+ are needed for proper tokenization

4. Without curly braces, the pattern “9” d d will match a 9 followed by twm”:“
more digits as separate tokens

Highlights of Rosie Pattern Language (3)

RPL Patterns are typically saved in files
* The Rosie Pattern Engine reads (and
compiles) RPL files
* There are hundreds of useful patterns
available in RPL packages, including:
e Timestamps in various formats
* Network addresses, paths
* Various log file formats
* Numbers, identifiers, etc.

An excerpt from rpl/network.rpl in the Rosie distribution:

—— Some basic HTTP patterns

http_command_name = "GET" / "HEAD" / "PUT" / "POST" / "DELETE" /
"TRACE" / "OPTIONS" / "CONNECT" / "PATCH"

network.http_command = http_command_name (network.url / common.path)

network.http_version = {"HTTP" "/" digit+ "." digit+}

- e.g. "HTTP/1.1"

Rosie> .match basic.datetime_patterns, "Feb 22, 2016"
[basic.datetime_patterns:
[pos: 1
text:
subs:
[1: [datetime.simple_date:
[pos: 1,
text: "Feb 22, 2016",
subs:
(111111
Rosie> .match basic.datetime_patterns, "2016-02-25T03:40:112"
[basic.datetime_patterns:

"Feb 22, 2016",

[pos: 1,
text: '2016-02-25T03:40:11Z",
subs:
[1: [datetime.datetime_RFC3339:
[pos: 1,
text: "2016-02-25T703:40:11Z",
Comments start i
with a double dash. [1: [d?gzzfmi.full_date_RFC3339.
Note also the abilit LA o
to use whitespacey text: "2016-02-25",
for readability S???;
2: [datetime.full_time_RFC3339:
[pos: 12,
text: "03:40:112",
subs:

(111111111

Note: Rosie does parse out the month, day, year, etc. separately. Those sub-
matches are not shown here for clarity.

jamiejennings: ./run -patterns | grep network
This is Rosie v@.88

basic.network_patterns definition red
network.email_address definition red
network. fqdn definition red
network.host definition
network.http_command definition red
network.http_version definition red
network. ip_address definition red
network.protocol definition
network.url definition red
jamiejennings:

jamiejennings: cat /etc/resolv.conf

#

Mac 0S X Notice

#

This file is not used by the host name and address resolution
or the DNS query routing mechanisms used by most processes on
this Mac 0S X system.

#

This file is automatically generated.

#

domain raleigh.ibm.com

nameserver 9.0.128.50

nameserver 9.0.130.50

The “patterns”

option lists the
patterns loaded, and
the color in which
matches will appear

—
jamiejennings: ./run 'common.word basic.network_patterns'| /etc/resolv.conf

raleigh.ibm.com
9.0.128.50
9.0.130.50
jamiejennings:
jamiejennings: ./run basic.matchall /etc/resolv.conf

#

0S XN

#

#

DNS

0S X sy .
#

#

#

raleigh. ibm. com
9.0.128.50
20ver 9.0.130.50
jamiejennings:

This pattern finds
lines that start with a

word followed by a 3

Basic.matchall is

pattern that looks for a few
dozen common patterns,
anywhere in the input

Highlights (4): CLI

The command-line interface to the Rosie Pattern
Engine reads pattern definitions from RPL files,
and matches against input from files

Any text can be

used as input

1. There are hundreds of patterns in the RPL library

2. The single quotes on the command line prevent the shell from

interpreting characters (such as dot) in the RPL pattern

Rosie Pattern Engine generates JSON. The JSON is converted

network address to just the matching text and printed in color because this is
easier to read in a terminal window

4. In this example:

Punctuation prints in black

Words print in yellow, and likely identifiers in cyan

Network addresses print in red

Numbers, including hex, print as underlined

jamiejennings: ./run -repl

Rosie> common.number
common.number = (common.denoted_hex / (common.float / (common.hex / common.int)))
Rosie> common.denoted_hex
common.denoted_hex = {"0x" common.hex}
Rosie> .match common.number, "@x3C"
[common. number:
[text: "@x3C",
subs:
[1: [common.denoted_hex: . ‘
[text: "@x3C", The input “0x3C”
S'iilm [. matches
A artacy common . number,
subs: generating a match
i, structure
pos: 3111,
pos: 1111,
pos: 1]]

Rosie> .eval common.number, "@x3C"
CHOICE: (common.denoted_hex / (common.float / (common.hex / common.int))

Matched "@x3C" (against input "@x3C")
Explanation:

IDENTIFIER: common.denoted_hex
Matched "@x3C" (against input "@x3C")
Explanation (identifier's definition): {"@x" common.hex}
GROUP: {"@x" common.hex}
Matched "@x3C" (against input "@x3C")
Explanation:
SEQUENCE: "@x" common.hex
Matched "@x3C" (against input "@x3C")

Explanation:
e e LITERAL STRING: "@x"
Matched "@x" (against input "@x3C")
IDENTIFIER: common.hex
Matched "3C" (against input "3C")
Explanation (identifier's definition): hex_digits+
T T e Taatetaratn QUANTIFIED EXP (raw): hex_digits+
Matched "3C" (against input "3C")
3.....BOUNDARY
Matched "" (against input ")
[common. number:
[text: "@x3C",
subs:
[1: [common.denoted_hex:
[text: "@x3C",
subs:
[1: [common.hex:
[text: "3C",
subs:
(1,
]]?os: 3111,
pos: 1111,
p0521]l

Rosie>

A pattern name evaluates
to its definition, which
Rosie then displays

Highlights (5):
Interactive Pattern
Development

The Rosie Pattern Engine has a read/eval/print loop that
can be used to develop and test patterns. Existing
patterns are available, and new patterns can be defined.
A detailed trace explains how a pattern matches (or
fails) against sample input.

The “.eval” command takes

the same arguments as
“.match” and prints a trace
(highlighted at left) of the
matching process

The “.eval” command always produces a trace, whether the
match succeeds or fails.

The “.match” command by default prints a trace when a match
fails.

The effect of automatic tokenization is shown explicitly in the
trace output, where Rosie shows the step of matching
BOUNDARY (the inter-token boundary).

In this example, Rosie looks for BOUNDARY only after the
common . number is matched, and the end of the input
successfully matches BOUNDARY.

———— spark.rpl patterns for Apache Spark logs

———— (c) 2016, Jamie A. Jennings

spark.filename = {[:alnum:1/[_%!$@.,~—]1}+

ST, RPL for root cause analysis

spark.using_message = "Using" .*

spark.ignore = "="x $
spark.message = .* Notes
spark.typical = datetime.simple_slash_date datetime.simple_time common.word common.identifier_plus_plus ":" spark.message 1. The basic.matchall pattern can be used to

quickly see what Rosie can already

spark.py_identifier = {![:space:] .}x recognize in an input file

s e - 2. Then, more complex patterns can be
spark.driver_stacktrace = "Driver stacktrace: assembled interactively using existin
spark.caused_by = "Caused by:" common.dotted_identifier patterns y g g
spark.and_more = [:space:]x "..." common.int "more 3. Here, the input files are Apache Spark logs
spark.py_traceback_start = "Traceback" .x 4. _The logs_contain a mix of Python and Java
spark.py_traceback_file = [:space:]x "File" {"\"" common.path "\", line"} common.int ", in" spark.py_identifier information
spark.py_line = " "{4,} spark.message
spark.py_java_exception_start = ":" common.dotted_identifier ":" {!{common.dotted_identifier $} .}* common.dotted_identifier $

spark. java_exception_start = common.dotted_identifier

alias spark.fn_or_native = (spark.filename ":" common.int) / "Native Method"
spark.exception_start = common.dotted_identifier ":" spark.message

spark.exception_at = [:space:]x "at" { common.dotted_identifier "(" spark.fn_or_native ")" }

spark.patterns = spark.typical /

spark. py._traceback_file / jamiejennings: ./run spark.patterns ~/Data/spark-log3.log | head -5 Output generated using this RPL code
spark.exception_at / 16/02/08 10:14:33 INFO Scar_‘kCoptexi Running Spark version }.6.0 . . — .
spark.exception_start / E136/02/08 10:14:33 NativeCodeloader Unable to load native-hadoop library for your platform... using builtin-java classes where applicabl
spark.]avall_exceptlonTstart / 16/02/08 10:14:33 INFO SecurityManager Changing view acls to: al

spark.py_java_exception_start / W 16/07/8 19:14:33 1NFO SecurityManager Changing modify acls to: al

spark.driver_stacktrace / 16/02/08 10:14:33 I SecurityManager SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(al); use
spark.caused_by / rs with modify permissions: Set(al)

spark.py_traceback_start / jamiejennings: ./run -json spark.patterns ~/Data/spark-log3.log | head -1

spark.py_line / {"spark.patterns":{"pos":1,"text":"16\/02\/08 10:14:33 INFO SparkContext: Running Spark version 1.6.0","subs": [{"spark.typical":{"pos":1,"tex
spark.py_traceback_file / t":"16\/02\/08 10:14:33 INFO SparkContext: Running Spark version 1.6.0","subs": [{"datetime.simple_slash_date":{"pos":1,"text":"16\/02\/08","s
spark.py_line / ubs":{}}},{"datetime.simple_time":{"pos":10,"text":"10:14:33 ","subs":{}}},{"common.word": {"pos":19,"text":"INFO","subs" : {}}}, {" common. identi
spark.and_more / fier_plus_plus":{"pos":24,"text":"SparkContext","subs":{}}},{"spark.message":{"pos":38,"text":"Running Spark version 1.6.0","subs":{}}}1}}1}}
spark.command / jamiejennings:

spark.using_message /
22 spark.ignore

Implementation

“Simplicity does not precede complexity, but follows it.” Alan Perlis

RPL is a language of parser combinators

Parser combinators are
— Recursive descent parsers
— Based on higher order functions
— Considered easy to read
— Often used to parse CFLs

Rosie Pattern Language
— Recognizes deterministic CFLs
— Combinators are:
= Sequence
» Ordered choice
» Quantified expressions

Rosie> network.http_command

network.http_command = http_command_name (network.url / common.path)
Rosie> .match network.http_command, "GET http://www.ibm.com/index.html"

{"network.http_command":
{"text": "GET http://www.ibm.com/index.h...",
"pos": 1.0,
"subs"':
[{"http_command_name":
{lltextll : llGErll ,
"pos": 1.0,
"subs": [1}},
{"network.url":
{"text": "http://www.ibm.com/index.html",
"pos'": 5.0,
""subs":
[{""common.path":
{"text": "/index.html",
"pos'": 23.0,
"subs": [1}}]1}}1}}

Rosie>

» Predicates: look ahead, look behind, negation
— Tokenized (“cooked”) and untokenized (“raw”) expressions

24

Patterns in the RPL library (at present)

= Basic
— number, identifier, word, and more
— and quoted/bracketed versions

= Commonly used and specific
— int, float, hex, and other numbers
— several kinds of identifiers

— path names for Unix and Windows
— GUIDs

= Network patterns

— ip address, domain name, email address,
http url and commands

= Timestamps

— RFC3339, RFC2822, and more than a dozen
other common formats

= CSV data
— delimiters: , ; |
— quoted fields: “foo” or ‘bar’
— escapes: " or \" or \"\
= JSON data
— full parse, or

— match nested and balanced {} []

= Log files
— syslog constituents (covers most log files)
— Java exceptions, Python tracebacks

= Source code (micro-grammar approach)
— Extract line and block comments
— Extract code (no comments)
— Python, Ruby, Perl, js, Java, Perl, C, C++, ...

25

PerfOrmance © = * s * e ot g o

Lua and LPEG get the credit for this. 1
(I needed only to get out of the way.)

.8
’-(g o
S
O
Q
n
10¢
8.
sounssnsd ol
) QE‘ PESUDIERETS T o

| (oM 1000000 e e

2 ~'input size (# log entries)

Grok

JGrok

Rosie

Single threaded!
Few optimizations!

Other capabilities, current and forthcoming

Language Implementation

= Lexical scope (nested environments) = Self-hosting

= Modules have their own environments ~ Allows easy language modifications

L . — A compiler extension interface would allow
with import/export controls (forthcoming) language extensions

= “Macros” (i.e. pattern generating = Interfaces: API, CLI, REPL
functions) — Native APIs in C and Lua
— Have Lua functions for AST - AST — C APl is auto-generated from Lua API
— Need more experimentation = Foreign function interface: librosie
= Post-processing instructions (forthcoming) — Sample clients in
— Match - Match Python, Perl, Ruby, js, Go, ...
— Lua as extension language Lua???
— Uses include — Grok replacement (for ELK stack)
» Format conversion = Output generator is a Lua function
= Sanitizing and anonymizing : : :
« Meta-data collection = Persist compiled patterns to disk (forthcoming)

= More debugging capabilities (forthcoming)

27

Conclusion

28

Rosie Pattern Language
— Designed for parsing “in the large”
— More expressive than regex
— With in-line automated tokenization
— And many features commonly found in programming languages

Rosie Pattern Engine
— Small (~ 350 KB on disk, ~ 2.5 MB memory) and relatively fast (around 4x competition)
— With pattern development tools
= REPL Exploring Ipeg
= Debugger enhancements to
support RPL
pattern debugging

“Eval” (interpreter) shows full match trace

Future: breakpoints, single step, single identifier trace
— Implemented in Lua, using LPEG
— Released as open source in February, 2016

Open Source Software, MIT License

Github (public) https://github.com/jamiejennings/rosie-pattern-language/

IBM developerWorks Open (tutorials, blog) https://developer.ibm.com/open/rosie-pattern-language/

Implementation details wo.o2v)

“Sample” RPL patterns | Rosie Pattern Language (RPL) 100’s of patterns: Public github
* Numbers, identifiers MIT License
* Network, email addrs . S .
« M dat & times https://aithub.com/jamiejennings/rosie-
el gdaies pattern-lanquage/tree/master/rpl
» Syslog elements
+ Etc.
Rosie REPL Lua ~ 600 lines of Lua code Public github
Rosie CLI ~ 25 lines of RPL MIT License
Rosie Debugger These leverage the API
Rosie API Native: Lua, C ~ 20 functions h;;tﬁz:r/r/fli;rr']u;z'gog . Jamieienningsiiosie:
Others: via libffi
Rosie Compiler Lua ~ 1300 lines of Lua code
(parser in RPL, bootstrap in Lua/LPEG) ~ 60 lines of RPL
LPEG ANSI C Lua PEG library ~ 46 Kb Public web, MIT License
CJSON Lua JSON library ~ 54 Kb http://www.inf.puc-rio.br/~roberto/Ipea/
Lua ANSI C Lua interpreter ~ 224 Kb Public web, MIT License
http://lua.org

30

[[] [[[]
rprint (awk-like processing of Rosie json output)
bash-3.2% rosie -encode json -wholefile py.line_comments_only sklearn/utils/validation.py |
rprint 'for i=1,NF do print($i); end’
Authors: Olivier Grisel
Gael varoquaux
Andreas Mueller
Lars Buitinck
Alexandre Gramfort
Nicolas Tresegnie
License: BSD 3 clause
Silenced by default to reduce verbosity. Turn on at runtime for
performance profiling.
First try an o(n) time, 0(1l) space solution for the common case that
everything is finite; fall back to 0(n) space np.isfinite to prevent
false positives from overflow in sum method.
is numpy array
Don't get num_samples from an ensembles Tength!
force an upcast to "long under Python 2
special notation for singleton tuples
create new with correct sparse # convert dtype # force copy
store whether originally we wanted numeric dtype
not a data type (e.g. a column named dtype in a pandas DataFrame)
if input is object, convert to float.
no dtype conversion required # dtype conversion required. Let's select the first element of the
Tist of accepted types.
To ensure that array flags are maintained
make sure we actually converted to numeric:
only csr, csc, and coo have ‘data attribute # FIXME NotFittedError_ --> NotFittedError in 0.19
bash-3.2$%
31

Rosie Pattern Engine API

= Engine management
— New engine
— Configure engine
— Delete engine
— Query engine configuration
— Query engine environment
— Future: Set logging level

= Environment (per engine)
— Load string (RPL definitions)
— Load file (RPL definitions)
— Load manifest (files of RPL definitions)
— Erase environment

32

= Matching (per engine)
— Match against string
— Match against file

= Debugging (per engine)
— Eval against input string (full trace)
— Eval against input file (full trace)
— Future:
» Trace single identifier (combinator)
= Breakpoint

Rosie is self-hosting

Rosie is a parser, and Rosie is used to parse Rosie Pattern Language
About 60 lines of RPL (core) to define the current RPL (v0.99)

Capabilities (e.g. syntax error reporting) made for RPL itself can be applied to user patterns,
and vice-versa (e.g. macros)

Ability to support multiple versions of RPL, even different dialects

Non-trivial user extensions to RPL can be had by:
— Specifying RPL for the extension (to RPL)
— Writing a compiler “plug-in” for the extension
— The compiler plug-in interface has not yet been designed

33

Tokenization is non-trivial

RPL

a a
(a a)
{a a}

a+
a+ b

(a)+
(a)+ b

(a / b)
(a/ b) c
{{a / b} c}
{@a / b) c}

(a b)+
{a b}+

(a b)+ c
{a b}+ c

34

Meaning

a~a
d~a
da

aaaa...a
aaaa...a~b

a~a~a~a~...~a
a~a~a~a~...~a~b

a
b

a~C
b~c
ac
bc
7?7 > Same as {{a / b} c}

a~b~a~b~...a~b
ababab...ab

a~b~a~b~...~C
abab...ab~c

= Token boundary
— Token boundary is denoted
— Has a default value (approx. \b)
— Default is idempotent
— Is redefinable!
— User’s definition may not be
idempotent

13 ”
~

= Requires careful implementation

= E.g. implementation of (p)* in Lua/lpeg:
peg = (p * (~* p)"0)"-1

Parsing Expression Grammars

= Rosie’s operators
— Parsing Expression Grammars
Instead of CFG or regex
— Express all deterministic CFLs
— And some non-CFLs, e.g. a"bnc"

= PEGs [Ford, 2004]
— Scanner-less parsing
— Compare to regular expressions
Greedy quantifiers: *, +, ?
Ordered choice operator: /
Predicates: “looking at”,

Linear time algorithms

— Languages recognized by PEGs are
= A superset of regular languages

“not looking at”

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Brya

n Ford

Massachusetts Institute of Technology
Cambridge, MA

baford@mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsmg Expression Grammars (PEGs) provide an alterna-
tive, based formal ion for describing his
oriented syntax, which solves the ambiguity problem by not intro-

1 Introduction

Most language syntax theory and practice is based on genera!we
systems, such as regular ions and context:

which a language is defined formally by a set of rules applied re

cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strmgs are “constructed”

by concatenating pausofa s. In contrast, {s € a* | (|s| mod 2=0)}

ducing ambiguity in the first place. Where CFGs express d
ministic choice between alternatives, PEGs ms[ead use pnormzed
choice. PEGs address felt exp: of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs pmwde arich set of operators for
they are to two minimal recogni-
tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power.

Categories and Subject Descriptors

F4.2 [Mathematical Logic and Formal Languages]: Gram-
mars and Olher Rewriting Systems— Grammar types; D.J3.1
[P L Formal Definiti and Theory—
Syntax; D.3.4 [P ing L P — Parsing

isa b ition of the same language, in which a
string of a’s is “accepted” if its length is even.

‘While most language theory adopts the generative paradigm, most

practical in science involve the
recognition and structural decomposmon or parsing, of slnngs
Bridging the gap from g ions to practical

ers is the purpose of our ever-expanding library of parsing algo—
rithms with diverse capabilities and trade-offs [9].

Chomsky’s generative system of grammars, from which the ubiqui-
tous context-free grammars (CFGs) and regular expressions (REs)
arise, was originally designed as a formal tool for modelling and
analyzing natural (human) langlages Due to their elegance and
ive power, p adopted
for describing machine-oriented languages as well. The ability of
a CFG to express ambiguous syntax is an important and powerful
tool for natural languages. Unfortunately, this power gets in the
way when we use CFGs for machine-oriented languages that are
intended to be precise and i Ambiguity in CFGs is

= All languages recognized by LL(k) and LR(k) parsers

35

Infinite loop in Perl RE?

= Claimed on stack exchange that this regex never terminates?
— See ‘man perlre’
— 'foo' =~m{ (0?)* }x;
— “Perl has special code to detect infinite recursion in this case and break out.”
— Alex Brown Dec 7 '10 at 16:09

= http://stackoverflow.com/questions/4378455/what-is-the-complexity-of-regular-expression

36

