
August 05 Page 1

Lua in ATE – Evolutions in Cable Assembly
and Wire Harness Analysis and Functional
Testing

August 05 Page 2

Outline of Presentation

• CableTest Overview

• Lua in ATE:

– Introduction

– Data Conversion Wizards

– A Lua Implementation of a Netlist Database

– Integration of Lua into Legacy Scripting Language

– JIT Conversion to Lua

– Lua Support for Engineering Values

– Integrating Lua in Other CableTest Products

August 05 Page 3

CableTest Overview

August 05 Page 4

CableTest Systems

• Interconnect Test Experts:
– Continuity (density/speed)
– High Voltage (range)
– Measurement (accuracy)

• 1,500 systems installed
worldwide and growing

• Multi-lingual technical support

• 25 Employees

August 05 Page 5

Applications

• Backplanes

• Connectors (including SCSI and

Filter)

• Functional Test

• Fuse Blocks

• Harnesses

• Power Cords

• Twisted Pair Telecom Wire

• Wiring Systems

August 05 Page 6

Industrial Sectors Served

• Aerospace

• Mass Transit

• Military

• Telecom

• Other

August 05 Page 7

MPT Family

• Mixed high & low voltage

energization

• Floating ground measurement

• Mass HiPot capability

• Up to 60,000 test points

• Test capabilities:

– Programmable or Fixed 5A

– Low Voltage

– Up to 20,000 VDC

– Up to 6,000 VAC

August 05 Page 8

Lua in ATE

August 05 Page 9

1. Introduction

• CableTest is a leading manufacturer of cable testers

and wiring analyzers

• The flagship equipment is the MPT wiring analyzer

• The software running MPT, Discovery, is an IDE and

test executive

• Discovery runs on Windows and is developed in

Delphi

August 05 Page 10

2. Data Conversion Wizards

• Converting data from various CAD packages helps

implementing the Test by Design concept

• Conversion is implemented in Lua packages – the

importers

• Advantages of using Lua:
– Good string manipulation library

– Good associative table and array support

– Good file I/O support

– The user can write their own conversion scripts

August 05 Page 11

• Unique public interface across the importers

helps utilizing them in a conversion Wizard

Data Conversion Wizards (continued)

Public.name = ‘SomeTestFixture'
Public.version = '1.1'
Public.start_info = [[This module is intended to import a drawing file (.df) ...]]
Public.input_info = [[Select the drawing file(s) (.df) to be used as input(s) ...]]
Public.output_info = [[Select the MPT address table (.csv) file(s) to be used as ...]]
Public.end_info = [[This was the final step for generating a complete MPT address ...]]
Public.input_filter = [[CAD Files(*.df)| *.df |Any Files(*.*)|*.*]]
Public.output_filter = [[CSV Files(*.csv)| *.csv |Any Files(*.*)|*.*]]
function Public.initialize()

...
end
function Public.finalize()

...
end
function Public.import(in_file_tbl, out_file_tbl, sort_order)

...
end

August 05 Page 12

• Replaced BTrieve database with Lua implementation

• Eliminated lack of flexibility in BTrieve implementation

• Improved application throughput significantly – in some cases

from ~30min to ~30s

• Extended the database functionality with support for arbitrarily

complex component networks

• Removed the field width limitations

• Implemented data consistency checks directly in the database

code

3. A Lua Implementation of a Netlist
Database

August 05 Page 13

• Reduced the number of database files to 1 per netlist

• The database preloads with the information sorted in several

different ways to optimize the automatic test pattern generation

• Efficient memory consumption due to table references

• Efficient retrieval due in part to table traversal semantics

• Took advantage of Lua’s recursive calls to parse component

networks of arbitrary complexity

• Used PIL like interface to delimiter separated files

A Lua Implementation of a Netlist Database (continued)

August 05 Page 14

• Legacy scripting language is a home-brewed, electrical test oriented,

C-like language

• Lua code can be embedded with constructs like:

• Lua chunks run in a sand box to prevent altering the environment

• The user can write custom event handlers in Lua

• Ability to create custom report formats

4. Integration of Lua into Legacy
Scripting Language

SetPrintLog(CON, ON, AllVolt);
Lua(

function adjust_current(i)
if i == 0 then

sethcs{dev = HC3} --Turns off source
return

end
local ballast
...

August 05 Page 15

Integration of Lua into Legacy Scripting Language (continued)

• Manual bindings to Delphi functions, variables and constants

• Getters and setters use pointer to data as upvalues

Type
PLUAVarXchgRec = ^TLUAVarXchgRec;
TLuaVarXchgRec = record

Name: PChar;
setter: lua_CFunction;
getter: lua_CFunction;
case integer of

0: (realval: real);
1: (intval: integer);
2: (byteval: byte);
3: (boolval: boolean);
4: (stringval: pchar);
5: (addr: pointer);
6: (func: lua_CFunction);

end;

// Declare variables, functions and constants for
// registration with Lua
SimpleVariables: array [0..100] of TLuaVarXchgRec =
((Name: 'htmlcheck1'; setter: SetBoolean;

getter: GetBoolean; addr: @HTMLCheck1),
(Name: 'programpath'; setter: nil;
getter: GetFunc; addr: @ProgramPath),

(Name: 'BUS_MAIN'; setter: nil;
getter: GetIntConstant; intval: BUS_MAIN),

...
// Register variables, functions and constants
RegisterSimple(SimpleVariables);
// Registers table variables
RegisterTableAndFields('stats', StatsStruct);

August 05 Page 16

5. JIT Conversion to Lua

• Current embedding scheme goes to depth 1 only

• Current syntax highlighter only handles one language at a time

• User has to switch between two different syntaxes

• We would like to migrate to doing a JIT conversion of the legacy

scripting language to Lua (in order to preserve some valuable

syntactic sugar)

• We experimented so far with Gema

August 05 Page 17

6. Lua Support for Engineering Values

• One of the beloved features of the legacy scripting language is

the user’s ability to enter engineering values in natural format:

• Lua would support engineering values (magnitude/dimension/

unit/precision) through tables or userdata, however the syntax is

complex

• Would like to tackle this in JIT preprocessing stage.

SetConductor(LV, Pass < 5.5 Ohm, I = Auto);
Continuity(All);
SetResistance(5V, Pass = 1.20 KOhm, 1.60 KOhm, I = Auto);
Resistor(P1.2, P1.3); //Test coil resistance
...

August 05 Page 18

7. Integrating Lua in Other CableTest Products

• Horizon 1500 – an embedded system – is used as a stand-

alone cable tester

• Current scripting capabilities are addressed with Tcl

• While powerful, Tcl is hard to grasp by our customer base

mainly due to its peculiar syntax

• Would like to either replace Tcl scripting with Lua scripting or

have them integrated side by side

