
Embedding Lua into LabVIEW

● LabVIEW
● Uses for Lua
● Preemptive and cooperative script

scheduling
● Issues & future

Albert-Jan Brouwer
acj.brouwer@citengineering.com

About LabVIEW

● Development environment for data
acquisition, test & measurement

● Libraries
● Widgets
● Drivers
● Graphical data-flow language (demo)

– Compiled
– Statically typed

● Lacks run-time programmability and control
over execution: need a scripting language

● LuaVIEW (http://www.citengineering.com/LuaVIEW)

http://www.citengineering.com/LuaVIEW

Uses for Lua

● Test scripting
● Query scripts
● Feedback/polling

loops
● Single syntax

● Lua as a library
– Expression evaluation
– Serialization

● Application glue
– Initialization
– Configuration
– Runlevels
– Unit tests & reuse

 For users For application programmers

Embedding into LabVIEW is
problematic

● Small number of threads
● LabVIEW is “stackless” on account of

dataflow scheduling: cannot call LabVIEW

time

C
 s

ta
ck

C

C

Lua

Lua

start script

call C call C call C

call Lua

Solution: yield

● As of Lua 5: lua_newthread(), lua_resume(),
and lua_yield()

● Yield to call and yield periodically for thread
re-use

time

C
 s

ta
ck

LabVIEW

C

Lua

Lua

start script

yield

call C

yield

call Lua

resume resume

Preemptive and cooperative
multitasking of scripts

● Making do with fewer OS threads
– Reuse threads during protracted functionality
– Embedded systems
– Scalability

● Preemptive and cooperative on the C side
● Appears preemptive from the Lua side
● Automatic event handling
● Embedding in a stackless language

How does it work?

● Open a “base” and “thread” lua_State
● The Lua-side code runs on the “thread”

lua_State
● Yield-to-call from an “adapter” C function:

closures with as upvalue a reference to the
actual function to be called when yielded

● Can pass arguments and results via the
stack of the “base” lua_State: lua_xmove()

● Frequently yield from opcode-counting hook

Binding

Issues & future

● Cannot yield from Lua when inside a C call
– The pcall() function in particular
– No official API function to check this

● Cannot yield from meta methods
● Beware of thread-local storage

Questions?

